OEF derivative --- Introduction ---

In this module there are 6 exercices on differentiation .

The derivative of a combined function

Given the function :
Determine the derivative in

=

NB : write "sqrt(a x+b)" for


The derivative of a polynomial

Let be a polynomial, defined in RR by .

Let be differentiable in RR. Determine the derivative.

For all real ,   =

The product rule

Determine the derivative of a function in RR defined by with :

The functions and are differentiable in and :

=
=

In order to determine the derivative of   we apply the following rule of differentiation:

The derivative function of   will be :

=

The quotient rule

Given the function defined in RR by   .

We will now determine the derivative of    in a few steps :


Tangent and derivative

Given the plane .

The curve C is the graph of the function , defined in .

The line is the tangent of C in point , with coordinates ( : ).

Point , with coordinates ( : ) is also on line . Determine the value of     at two decimals accurate.

xrange -, yrange -, parallel -,-,-,,1,0, 2*+1, grey parallel -,-,,-,0,1, 2*+1, grey hline 0,0,black vline 0,0,black arrow 0,0,1,0,8, black arrow 0,0,0,1,8, black text black , -0.5,-0.3,small , O text black , 1,-0.3,small , I text black , -0.5,1,small , J text blue , -+0.5 , , medium, y=f(x) linewidth 1.5 plot blue, plot green,

Investigate a Function

Given the function defined in RR by   .

Investigate this function and determine the extremum (extrema) of .

  1. The function is differentiable in RR :
    for all real
  2. The nature of the derivative function is zero for =
  1. The derivative of
  2. The nature of the sign of - + 0
  3. The nature of the sign of is on the interval
  4. is on the interval
  5. The extremum of reaches in a with value
The most recent version

Cette page n'est pas dans son apparence habituelle parce que WIMS n'a pas pu reconnaître votre navigateur web.
Afin de tester le navigateur que vous utilisez, veuillez taper le mot wims ici : puis appuyez sur ``Entrer''.

Veuillez noter que les pages WIMS sont générées interactivement; elles ne sont pas des fichiers HTML ordinaires. Elles doivent être utilisées interactivement EN LIGNE. Il est inutile pour vous de les ramasser par un programme robot.