Calcul approché d'intégrales --- Introduction ---

Ce module regroupe pour l'instant 4 exercices sur le calcul approché d'intégrales.

Ordre

On considère la formule de quadrature suivante:
.
Quelles relations doivent vérifier pour que cette formule soit exacte pour:
On rentrera les variables , sous la forme x1,x2. On écrira les conditions relatives à la base canonique de l'espace des polynômes.

Noyau de Peano

On considère la formule de quadrature suivante:
.
  1. Donner puis les valeurs possibles pour et et ou bien
    et
    de sorte que (*) soit exacte pour les éléments de la base canonique de .
  2. .
  3. Donner l'expression du noyau de Peano en remplissant les cases suivantes :
    .
  4. Donner une majoration de l'erreur en fonction de la dérivée d'ordre de .
    .

Méthode du point milieu

On désire calculer une valeur approchée de l'intégrale
par la méthode du point milieu à près. Pour cela, on prend un nombre de subdivisions uniformes de l'intervalle égal à .
  1. Calculer la valeur du pas .
  2. Calculer la valeur exacte de l'intégrale .
  3. Le nombre de subdivisions assure-t-il la précision voulue? .
La valeur du pas est et la valeur exacte de l'intégrale est . et en effet, le nombre de subdivisions n'assure pas la précision voulue.
Donner le nombre minimal de subdivisions qui assure cette précision.
Calculer la valeur de correspondant à ce nombre de subdivisions.

Méthode des rectangles

Le but de l'exercice est de calculer une valeur approchée de l'intégrale
par la méthode des rectangles à gauche à près. Pour cela, on prend subdivisions uniformes de l'intervalle .
  1. Calculer la valeur du pas .
  2. Donner la valeur exacte de l'intégrale .
  3. Le nombre de subdivisions permet-il de calculer une valeur approchée avec la précision demandée ? .

La valeur du pas est et la valeur exacte de l'intégrale est et en effet, le nombre de subdivisions n'assure pas la précision voulue.

Donner le nombre minimal de subdivisions qui assure cette précision :

Calculer la valeur de pour ce nombre de subdivisions par la méthode des rectangles à gauche

The most recent version

Cette page n'est pas dans son apparence habituelle parce que WIMS n'a pas pu reconnaître votre navigateur web.
Afin de tester le navigateur que vous utilisez, veuillez taper le mot wims ici : puis appuyez sur ``Entrer''.

Veuillez noter que les pages WIMS sont générées interactivement; elles ne sont pas des fichiers HTML ordinaires. Elles doivent être utilisées interactivement EN LIGNE. Il est inutile pour vous de les ramasser par un programme robot.